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Limit cycles in the presence of convection: A traveling wave analysis
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We consider a diffusion model with limit cycle reaction functions. In an unbounded domain, diffusion
spreads the pattern outwards from the source. Convection adds instability to the reaction-diffusion system. The
result of this instability is a readiness to create a pattern. We choose the Lambda-Omega reaction functions for
their simple limit cycle. We carry out a transformation of the dependent variables into polar form. From this we
consider the initiation of the pattern to approximate a traveling wave. We carry out numerical experiments to
test our analysis. These confirm the premise of the analysis, that the initiation can be modeled by a traveling
wave. Furthermore, the analysis produces a good estimate of the numerical results. Most significantly, we

confirm that the pattern consists of two different types.
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I. INTRODUCTION

Pattern formation has been a very active research topic in
biophysics during the last 30 years [1]. Morphological pat-
terning, such as animal coat markings, may be caused by a
chemical field [2-4]. The Turing model now has strong ex-
perimental support (see Ref. [5] for a review) [6,7]. This
mechanism has some limitations and so we continue to in-
vestigate variations of the model [8].

There is a new instability mechanism for pattern forma-
tion which involves the combined action of diffusion, flow,
and local nonlinear interactions. This mechanism, known as
flow-and-diffusion-structures (FDSs), leads to the formation
of stationary space periodic waves [9,10]. A simpler mecha-
nism for the formation of steady patterns, known as flow-
distributed oscillations (FDOs), has also been reported re-
cently [11-13]. FDO is a relatively simple kinematic
mechanism involving only differential flow (advection) and
Hopf oscillations. FDSs appear as a generalization of the
kinematic FDO mechanism to systems with differential flow
and diffusion [12,14].

There may be a direct biological application of FDO and
FDS mechanisms in biological patterning formation, such as
the formation of the vertebral precursors (somitogenesis).
These mechanisms can be applied to some developmental
processes, because they involved tissue growth, flow of cells,
and periodic expression of gene or proteins [15]. However,
convection-induced patterning is not generally supposed for
somitogenesis [16].

Recent studies show the existence of an unexplored
mechanism for pattern formation in reaction diffusion advec-
tion systems [17-20]. In this paper we consider the standard
reaction-diffusion model with the addition of convection
[21-23]. The more general form is a system with advection,
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as in Ref. [11]. Our motivation is theoretical, to see the effect
of convection on the robustness of the pattern formation. We
consider that a weak amount of convection or a similar effect
may be present in the biological process. This may soften the
standard requirements for the formation of pattern, increas-
ing the applicability of the model. Experimentally, convec-
tion is introduced from the boundaries [12,24]. The effect of
boundary conditions is also likely to be relevant in biological
systems. The boundary can have a significant effect on the
pattern formed [22]. However, we follow the suggestion of
Cross and Hohenberg to examine the system in a boundary-
free environment first [25]. In numerical simulations we
make an initial point disturbance. The pattern is formed,
spreading outwards from its initiation point. The disturbance
is oscillatory and complex. Our focus here is the way in
which the pattern propagates.

The reaction functions chosen in the full model corre-
spond to actual reaction mechanisms. Examples of these in-
clude the Belousov-Zhabotinsky reaction and Brusselator-
type systems such as the chlorine dioxide-iodine-malonic
acid reaction. Models such as the Schnakenberg reaction can
be considered an intermediate step towards these functions.
For an initial investigation, we have chosen simple, related
functions. The intention is to extend the analysis to more
realistic models in the future. Secondarily, the results in this
simple case may form a useful basis for comparison to more
complex systems.

Limit cycles are inherent in these oscillatory models,
since an unstable spiral at the steady state must be bounded
[26]. In this paper, we seek to exploit the limit cycle to aid
our analysis. To this end, we select the Lambda-Omega re-
action functions. These are chosen to produce the simplest
limit cycle possible: the unit circle.

The speed of propagation has been given for a two-
species system with no convection [27] and one with equal
convection [22]. A related theoretical study considers the re-
lationship between the onset of the instability and the longer-
term behavior of the nonequilibrium state [28]. Here the sim-
plest reaction-diffusion system with oscillatory kinetics was
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considered and complex behaviors were found.

We introduce a standard transformation of the reaction
functions in Sec. II with the hope that the oscillations will be
removed, or at least reduced in the full system. The transfor-
mation is to convert the dependent variables into polar form.
We construct the problem and show the pattern formation
from a point disturbance (Sec. III).

In Sec. IV we apply the transformation to the full system.
This brings the onset of the pattern into much sharper relief.
Two aspects—the pattern, and the initiation of the pattern—
are clearly distinguished. Thus this onset of pattern is effec-
tively a phase transition. We then consider that the formation
of the limit cycle approximates a traveling wave, and so we
employ a Fisher solution to the problem [29]. This gives
estimates for the speed of onset of the pattern. The relative
sizes of the parameters affects our analysis: we consider vari-
ous situations.

In Sec. V we carry out numerical experiments to discover
which of these estimates are valid. We find that there are two
distinct behaviors of the system, which appear to depend on
the relative amount of convection present. Our analysis pre-
dicts the onset of pattern in both situations. The transition
between the two states is complex, but we find a value alge-
braically which gives an approximate boundary.

We briefly discuss the relevance of absolute versus con-
vective instability in Sec. VI. Following on from this review
we find an alternative viewpoint which gives an interesting
interpretation of our results (Sec. VII).

II. LIMIT CYCLES AND THE A-w FUNCTION

We suppose that some form of chemical mechanism is the
underlying basis for biological pattern formation. If the
chemicals are well mixed, then the law of mass action valid,
and an ODE is an appropriate model:

=,

v=g. (1)

We consider reaction functions chosen for their simplicity
in the form of the limit cycle produced:

f=—v+u(l—u*-v?,

g=u+v(l—u?-v?). (2)

This is a simple form of the A-w class of functions. Here the
steady state is the origin and the limit cycle is the unit circle.
There is no parameter to determine the stability: the steady
state is unstable and the limit cycle stable. This behavior is
clear in the (u,v) phase plane (see Fig. 1). The circled points
on the diagram show the start of the phase plane trajectories.
The phase curves spiral out from the steady state to join the
limit cycle. The trajectories starting far away from the steady
state spiral into the limit cycle.

These functions are chemically unrealistic, as they stand.
However, we can relate these functions to the Schnakenberg
reactions, chosen to be the simplest chemical form which can
produce a limit cycle. This mechanism was proposed theo-
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FIG. 1. (Color online) Phase space for the limit-cycle reaction
(1), (2), given by a numerical solution. The phase curves spiral out
from the steady state (the origin) to meet the limit cycle (the unit
circle). The trajectories starting far away from the steady state spiral
into the limit cycle. Solid curves starting with circles are the
trajectories.

retically, but has been used as a model for actual reaction
mechanisms [30,31]. The key reaction there is the cubic au-
tocatalytic one, U+2V—3V. Using the law of mass action,
this produces the term uv?. The reverse step gives v>. These
types of terms form the core of the A-w functions, the cubic
terms.

We consider a new coordinate system for the dependent
variables u,v as a polar form r, 8 as follows:

r?=u’+ 0%,
v

tan 0= —. (3)
u

By differentiating these identities, we transform the first or-
der ODE (1) into

F=r(1-7r%),

o=1. (4)

The 6 equation clearly decouples and is resolvable. The re-
maining single-species ODE in r has steady states at —1,0, 1.
The negative state is unrealistic because r must be positive,
zero is unstable, and one is stable. The point r=1 is our limit
cycle: the unit circle. Furthermore, =1, time and so pro-
gression around the limit cycle is constant. This type of
analysis is often used in similar cases, such as the analysis of
traveling wave trains [1].

III. PATTERN FORMATION

Biological pattern formation is by definition spatially dif-
ferentiated. There are many models for this. One is that
chemicals diffuse within an organism, then cells respond dif-
ferently dependent on the concentration of one of these
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chemicals. If the concentration of the chemicals has formed a
pattern, then this is reflected by the cells.

For an initial analysis, we choose the simplest case: one
spatial dimension and some diffusion. By diffusion we refer
to the averaged gross effect of random motion of the chemi-
cals; with passive movement this is equivalent to Brownian
motion. In the case of general reaction functions, this system
is the one proposed by Turing [2].

We add a convective term to the system. This can be
considered a disturbance to the system, as an investigation of
stability. For a small amount of convection, this could corre-
spond to axial growth [15]. However, for convection to be
significant in axial growth we would require extremely slow
diffusion of the chemicals to fit the model.

The general system is then as follows:

u,= slugg—pu§+f,

U= 8¢~ qUg+ 8. (5)

We consider different convection on each species (p # q).
This effect could be created in a chemical flow reactor, with
one of the reactants held fixed in a packed bed [15]. For
biological applications, one of the chemicals may be held
within a cell, while the other flows freely. If both chemicals
flow freely, it is possible that their movement may be ham-
pered by obstacles such as the extracellular matrix. In this
case, a larger molecule may be affected more strongly than a
smaller one, and different convection speeds may result for
each chemical.

We consider that p > 0. If this is not the case, we make the
transformation (p,q,&)— (-p,—q,—&), giving a positive
value for p with no change to the form of Eq. (5). We can
remove one of the convective terms by a simple change of
coordinates x=§&—pt:

U= sluxx+f’

Uy =8xUx,— YWyt g, (6)

with f and g as in Eq. (2) and &, &,, and 7y positive con-
stants. From the original system (5) we have y=¢g—p. If v
turns out to be negative, we can reverse the sign as we did
for p and g. Equivalently, we choose the coordinate change
x=pt—§& previously, and set y=p—gq. In the case where the
convection is the same on both species (p=¢g), then both
convection terms are removed (y=0). This recovers the basic
Turing model.

We have reaction functions that have limit-cycle behavior
and convection, which is known to drive instability. The ap-
pearance of pattern is then to be expected, although the form
might be more difficult to predict. Satnoianu, Merkin, and
Scott [32] studied a similar system to our unscaled system
(6) previously, with Schnakenberg reaction functions in place
of the A-w ones. They found that periodic behavior is emer-
gent in the system over a broad parameter range.

In the numerical experiment, we start at the steady state
(0,0), except for a small disturbance at x=0. We try to simu-
late a boundless environment—to this end we find zero de-
rivative boundary conditions the most effective. The initial
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FIG. 2. (Color online) Pattern found for a diffusion system with
convection and limit-cycle reaction kinetics (6). The initial distur-
bance propagates and becomes pronounced, forming a regular pat-
tern with aligned oscillations. The propagation is linear, forming a
V shape. The convective effect is slight: the pattern is skewed
slightly to the right. In this case, the direction of the internal oscil-
lations is distinct from the angle of propagation of the pattern. This
is a numerical solution of Eq. (6) using NAG D03PCF, plotting species
u with y=g;=g,=1. The reactants are initially at steady state:
(u,v)=(0,0), with a small disturbance at x=0. The boundaries are
held at zero derivative u,=0, v,=0.

disturbance propagates and becomes pronounced, forming a
regular pattern with aligned oscillations. The propagation is
linear, forming a V shape. The convective effect is to skew
the pattern to the right (Fig. 2). Given the parameters in the
figure (y=g,=g,=1), the direction of the internal oscilla-
tions is distinct from the angle of propagation of the pattern.
The emergence of this pattern is the main focus of our study.

IV. TRAVELING WAVE ANALYSIS

Before we start any specific analysis, we rescale the spa-
tial variable x to remove one of the parameters. We choose
x=ve;y. This yields the system

U=y, +f,

U= Uy + 8V — YU, + 8, (7

where y="y/ v"s—l. Following suit, we expect e,=g,/g;, but
we go one step further in defining £=&,— 1. This produces a
symmetric first spatial derivative on both equations, with &
the difference between the two diffusion rates.

We wish to again convert u,v into the polar form (r, ).
During the conversion, we see that there is grouping of the
terms parametrized by & and 7:

U _ _
e ré'i + ;[svyy -y, ]+ (1 - ),

I u__ _
6,=0,,+ 2-;2 0, + ;[svyy - w,]+1. (8)

We complete the transformation
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FIG. 3. (Color online) Polar form of the pattern. The new coor-
dinate r transitions sharply from O to 1. This is a traveling wave,
propagating outwards. There are minor ripples in the established
solution: the limit cycle settled on by the PDE is not the unit circle,
but is close. The oscillation is at an angle to the traveling wave
front. There is a difference in behavior between the left and right
sides of the pattern: the angle of alignment and the frequency of the
pattern is different on either side. There is also a clear center to the
propagation, roughly at x=/2¢. This is a numerical solution of Eq.
(6) using NAG DO3PCF, plotting species u with e;=e,=1, y=2. The
reactants are initially at steady state: (u,v)=(0,0), with a small
disturbance at x=0. The boundaries are held at zero derivative u,
=0, v,=0.

r,= (1 + &sin*6)r,, + (2 sin 6 cos 06, — ysin®O)r, + (1 - r*

—_ . —_ . 2 —_ .
- 63 + £ sin @ cos 06, — & sin 06_‘2, — ¥sin fcos 66,)r,

ry
6,=(1+&cos’0)6,, + (25 +28- cos’>H— & sin O cos 06,
: p P .

- 700520> 6,+1+ w sin @ cos 6. )
If we translate our numerical results into this polar form,
the onset of the pattern becomes very clearly demarked: the
new coordinate r transitions sharply from O to 1. The pri-
mary behavior is that of a traveling wave, propagating out-
wards. The internal behavior of the pattern, the steady oscil-
lation, is reduced to a secondary effect. There are minor
ripples in the established solution: the limit cycle settled on
by the PDE is not the unit circle, but is close. There is a
difference in behavior between the left and right sides of the
pattern: the angle of alignment and the frequency of the pat-
tern is different on either side (Fig. 3). Next we examine this
traveling wave analytically.

A. Simple version

We consider the very simplest situation: equal diffusion
on both chemical species (€=0) combined with no convec-
tion of v (¥=0). We make a simplifying assumption for an
initial analysis 6,=~0, 6,,~0. The problem reduces to

re=ryy+r(1 -,
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6,=1. (10)

Then 6 decouples, as for the ODE. The solution for 6 is 6
=t, to within an arbitrary constant.

The remaining equation in r is of the form similar to the
Fisher equation and should therefore yield a propagating
wave solution. This analysis is covered in greater detail in
Ref. [1]. We look for a solution of the form

r(y,t)=R(z), z=y-ct. (11)

which gives
R"+¢R' +R(1-R*»=0. (12)

We carry out a phase plane analysis in the (R,R’) phase
plane. We find that ¢>0 gives a stable point at (R,R')
=(0,0), which suggests the solution we are looking for. The
point R=1, which corresponds to our limit cycle, is always a
saddle point. We are looking for a phase plane trajectory that
leaves this saddle point and goes to the zero steady state: this
will be our traveling wave solution.

Small wave speed ¢ <2 gives a spiral in the phase plane,
which would imply »<<0 at some point on the trajectory.
From the definition of » we know this to be impossible and
thus this is unrealistic for a traveling wave solution. For ¢
=2 we have a node and the trajectory discussed above, leav-
ing from the saddle point will head directly to the node,
remaining in the fourth quadrant of the phase plane and
therefore realistic. This trajectory equates to the traveling
wave that we are looking for. We expect that the least speed
wave will be achieved so we predict a wave of speed c=2.
Converting this back into our unscaled system (6), we have
cr=2\g, to the right. There is also a solution to the left: ¢,
=—2\38F1._In the original system (5), we have wave speed
=p+2e,.

B. Aside: 6 behavior

In the previous section, we have shown that the » equation
supports a traveling wave analysis. The traveling wave
analysis is really a form of stability analysis. It is essentially
only interested in the destabilization of the steady state, and
so operates in the region outside the pattern, where r=0. It is
also necessary that R describes a heteroclinic orbit in the
(R,R') phase plane, here moving smoothly (but rapidly)
from (0,0) to (1,0).

The 6 equation is incidental to this analysis, and we made
a simplifying assumption that the behavior of § would only
have minimal impact on the r traveling wave. However, the
behaviors of r and 6@ are strongly interlinked, and so we
examine 6 further.

If we consider the relevant region outside of the pattern,
we see that r— 0 and so 6 is effectively undefined. In theory
then, we can assign any value or function to 6 in this region.
However, analytically we see in that = const appears to be
the case (Fig. 4).

The simple version of the problem (above) yields a sim-
pler form of Fig. 2, which is fully symmetrical. In this case,
the form of @ within the pattern is approximately 6=z, as
suggested by our approximation. Thus there is no hetero-
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FIG. 4. (Color online) Large parameter behavior of . The os-
cillations are aligned with the traveling waves. To the left of the left
traveling wave (the light, solid line), the angle is roughly 0, and to
the right of the right wave (the dark, dashed line) the angle is
approximately 7/2. There is a smooth transition between the left
and the right of the pattern. The oscillations at the center line (y/2;
medium, dot-dashed line) are roughly perpendicular to the center
line itself. This is a numerical solution of Eq. (6) using NAG DO3PCF,
plotting species u with y=5, e;=g,=1. The reactants are initially at
steady state (u,v)=(0,0), with a small disturbance at x=0. The
boundaries are held at zero derivative u,=0, v,=0.

clinic orbit traced by 6—the transition is from constant to
increasing.

C. Full system

We now apply the method for the full system. Here we
may have different diffusion on the two species (€#0) or
some convection (¥>0). We again make the assumption
0’ =0, ¢'=0. We introduce the traveling wave coordinate
z=y—ct and look for a solution R(z)=r(y,t). We also linear-
ize the system, dropping the R? term:

(1+&sin’OR" + (¢ — ysin’h)R' +R=0,

—RH_ —R/
B8 YT Ginfcos 0+1=0. (13)

Using the same approach as before, we find ¢
=7 sin’6+2v1+& sin?@. Converting this back to the unscaled
coordinate system (6) we have c=1ysin’6
+2\g, cos’f+¢, sin’f. We see that y and &, remain linked
by the sin? term. These parameters occur on the v differential
equation, and v=r sin 6.

In the original system (5) we have wave speed=p cos’#
+q sin?0+2\g, cos’+¢, sin*f. Again, the parameters for
each species u and v are linked by the functions cos® and
sin?, respectively.

This general result for the wave speeds gives a depen-
dence on the angle variable 6. We consider some general
numerical experiments to assess the behavior of the system.
What we find is two distinct types of behavior. We refine our
wave speed estimates in light of these particular cases.

D. Small parameter behavior

For parameters close to those of the simple system,
namely, small convection (y<1) and near-equal diffusion
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(g, =&,), we expect the behavior to remain similar to that of
the simple system. Previously we have seen ODE-like and
Turing-type behavior in a convection-free system [33]. In
both cases, we see that the internal angle of the pattern (the
group direction) is not in line with the wave front. As such,
the oscillation is perceptible at the wave front. This suggests
that an average value approximation of # may be an appro-
priate estimate.

In this case we approximate sin’6 with its average value
1/2. This yields c= y/2+2\1+&/2. In the unscaled coordi-
nate system (6) we have ¢~ y/2+ \Ev'sl +&,.

If we consider the limit as the amount of diffusion tends
to zero, we see that the center line of the propagation is at
/2. In this situation, the convection does not increase the
separation of the left and right wave fronts; the spread of the
propagation is solely due to diffusion. In the original system
(5) the incident fronts are at wave speed~ 2%+ V2\E + €.

For dimensional reasons, it is appropriate to write &;
= ;2. Then the diffusive contribution to the wave speed be-

comes \2Ve,2+&,% which is reminiscent of Pythagorean
form. More simply, the term is additive and the wave speed
is proportional to the diffusion of each species.

E. Large parameter behavior

As the strength of convection 7y increases, we see an
alignment of the incident wave with the internal group direc-
tion. This means that the value of 6 is approximately con-
stant at the onset of the wave. We investigate the effect of
this on the wave speed estimate.

We consider the range of values possible for the right
wave speed with a fixed value for 6. Since sin” has a range of
[0,1] then ¢ must range at least between 2 and y+2v1+&.
This second value is not necessarily greater than the first, for
example, y=0 and £=-1/2 gives \V2=~1.4, which is less
than 2. However, once y>2 the second value is greater than
the first, so we take this as an estimate for the transition to
large parameter behavior. Thus the range /ipossible values
for the right wave speed is ¢ € [2, y+2V1+&].

On the left we have a similar result: ¢, e[-2,%
—2\°"1+§] is the range once y>2. We note that for sin®>=0,
6#=0 (mod =) and for sin’=1, 6=7/2 (mod ).

We propose that the maximum spread of the instability is
achieved. That is, the wave speeds are maximized within
their given possible ranges. For this, the left wave speed
must reach its lower limit, and the right its highest. This
gives ¢;~-2 and cx=~y+2V1+&. Then the onset angle to
the left is expected to be approximately 0 (mod 7r), and to
the right of the right wave the angle should be roughly
/2 (mod ).

We see this is the case in Fig. 4. There is a smooth tran-
sition between the left and the right of the pattern. The os-
cillations at the center line (approximately y/2) are roughly
perpendicular to the center line itself.

In the unscaled coordinate system (6), for strong convec-
tion, we have CL%—2\5; and cg= y+2\e,. In the original
system (5), this is left wave speed=~p—2+e, and right wave
speed=qg+ 2\5:2 for ¢>p. In the other case p>gq, there is a
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FIG. 5. (Color online) Numerical data compared to analytical
estimates. The estimates correspond to the data over the full range.
The low parameter estimate holds for longer for high & than for low.
The points are data from numerical solutions of Eq. (6) using NAG
DO3PCF, plotting species u. The parameter e=g,/&; in this experi-
ment g;=1 so e=g,. The reactants are initially at steady state:
(u,v)=(0,0), with a small disturbance at x=0. The boundaries are
held at zero derivative: u,=0, v,=0. (a) Left wave speed. The
darker surface is the low parameter estimate y—1\2g; the lighter
surface is the high parameter estimate —2. Both estimates hold well
with a smooth transition between behaviors. (b) Right wave speed.
The darker surface is the low parameter estimate y+ \2¢; the lighter
surface is the high parameter estimate y+2\s. Both estimates are
good and there is a neat transition between behaviors.

reversal and left wave speed%q—Z\f's—z and right wave
speed=p+2\g,.

This analytical prediction was made from observing that
the internal waves become aligned with the onset of the in-
stability. However, when we make the assumption that the
spread of the propagation is maximized, it follows that the
onset angle # become constant. Furthermore, the suggestion
of y=2 as a transition value between behaviors occurs natu-
rally from the algebra.

V. NUMERICAL EXPERIMENTS

Having carried out an analysis together with some initial
numerical investigation, we now conduct a more comprehen-
sive experiment. We vary our parameters over a wide range
and measure the incident wave speeds in each case. The
results confirm our analyses, as we can see in Fig. 5.
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For the left wave speed the difference between the low
and high parameter estimate is pronounced, so the transi-
tional behavior is noticeable. There is less difference be-
tween the estimates on the right, and the transition is close to
the intersection of the estimates. This seems quite remark-
able, that the behavioral transition occurs where the esti-
mates intersect. As a result, there is no discernible area of
transitional behavior.

In both cases the low parameter behavior endures longer
for € high, compared to & low. This suggests that the transi-
tion, caused primarily by the convection vy is held in check
more strongly by the diffusion on v, where the convection is
applied.

VI. ABSOLUTE VERSUS CONVECTIVE INSTABILITY

There is a concept of stability in systems such as these,
which considers whether the system at a particular spatial
point, once destabilized, will return to the steady state. If so,
the system is classified as convectively unstable. If the
chemical species do not return to stasis then the system is
deemed absolutely unstable.

In line with our analysis, we define absolute instability as
sign (left wave speed)#sign (right wave speed), with equiva-
lence giving convective instability. Combining this with our
results, we see that for small parameters we require ¥
>8(e; +&,) for convective instability in the unscaled system
(6). This inequality is unlikely to be satisfied while keeping
within the small parameter regime.

However, if we consider the original system (5), the con-
dition is (p+¢)>>8(e,+¢,), which is quite possible to sat-
isfy while still remaining in the “small parameter” regime).
For example, p=g=2 gives y=0, and then &, =¢,=1 satisfies
the condition.

For large parameters we always have absolute instability
in the unscaled system (6). Referring to the observed data
(Fig. 5), we see the left and right wave speeds always have
different signs. Thus, we can classify this system as only
exhibiting absolutely unstable behavior.

However, if we consider theh original system (5) we find
that ¢>p>2+\e, or p>g>2ye, will give convective insta-
bility rather than absolute instability. We see that, in the
original system (5), we can always shift the stability from
absolute to convective with sufficient convection applied to
the system. In the flow coordinate system, the stability is
essentially absolute. However, when we convert to this sys-
tem we make an arbitrary choice to remove the parameter p
rather than, for example, ¢g. Then the distinction between
absolute and convective instability becomes similarly arbi-
trary.

VII. AN ALTERNATIVE PERSPECTIVE

At the start of our analysis, in Sec. III, we chose a new
coordinate system for the purpose of eliminating one of the
convective terms. This reduction in the number of param-
eters proved useful in the ensuing work. However, the choice
of coordinates, as we observed previously, was arbitrary.
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Now we consider an alternative coordinate system, one
centered on the convection. Starting from the original system
(5) we choose x=¢&—23%1. This gives the system as

U= E Uy, + Wx+f’

Ut=820xx_’$/vx+g’ (14)

where 5/=9§2. We can recalculate the apparent wave speeds
from this pe_rsEective. For our “small parameter” regime we
have ¢=++2+e|+&,. Here we see that we have aligned our
system centrally with the flow.

In our large parameter case, we first consider g > p. This
ensures ¥>0. Now the left wave speed is é=—(9+2Ve),
and the right wave speed is ég=y+2\e,.

In the other case p<g, we define y=""%>0:

Uy =& Uyy— yux+f’

vt:82vxx+’7vx+g' (15)

Now the wave speeds are &, =—(7+21¢,) and the right wave
speed is cx= 7/+2\s“sT.

Consider the right wave speed. In each case it is a func-
tion of only one of the diffusion parameters. We examine the
equation for the relevant species. In both cases, we find a
negative convection term for that species. This suggests that
negative convection drives the onset of instability.

For the left wave speed the connection is with the positive
convection. However, in this direction x is decreasing. From
this perspective, the signs of the convective terms change. In
this sense then, the connection is the same.

If we understand that the negative convection drives the
instability wave front, then we can consider only the associ-
ated species. For example, looking for the right wave speed
in Eq. (15), we see that u is the relevant species. We make
the assumption that the other species v is much smaller than
u, and so disregard it. Then we can carry out a traveling
wave analysis for this single species. The result is exactly the
same as we found in our polar-form analysis, with a much
simpler approach. We can confirm this behavior by observing
that the initiation angles 0 and /2 correspond to u# and v
only, respectively.

We can go one step further in unraveling the puzzle. If we
simply separate the species—perhaps we could call this a
superlinearization—we can produce two wave speeds, one
from each species. In our example (15), for the right wave
speed we haﬁ: the possibility of y+2+e, from the u equation
and —y+2ve, from v. Then we apply the “maximization”
principle suggested earlier. For large %, we can be sure that
the wave speed given from the u equation will maximize the
propagation. Thus we can find the wave speeds by applying
two simple concepts to the problem.

The behavior for small convection relies on some more
complex way of combining the two species. The wave speed
in this case is dependent on the strength of diffusion of both
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the species. Therefore the polar-form approach given previ-
ously retains some merit.

VIII. DISCUSSION

The addition of convection to the reaction-diffusion
model has produced many patterns [22,34]. Advection, being
the broader definition, has the potential to produce even
more. Aspects of the pattern have been observed, such as the
different behavior to the right and the left of the free-forming
pattern [32].

Previously analyses have considered a variety of models,
most restricted in different ways. No movement for one spe-
cies [35], equal diffusion and equal convection [22], and
fixed diffusion-convection ratio [9] have all been considered.
Here, we have considered the most general diffusion and
convection possible, as in more recent work [34].

Much previous work was devoted to the discussion of
FDSs [10]. This is spatial pattern with no variation in time.
Our reduction of the system to two parameters allows for a
clear and concise analysis of the system. However, after our
change to convective coordinates, the meaning of “time-
constant” is lost. In fact, in our reduced system, a time-
constant solution is only possible for the trivial case y=0.

The standard analysis to date has been a linear existence
analysis for the pattern, involving dispersion relations. This
follows the Turing derivation, but is difficult for this more
complex model. In our analysis we have employed a differ-
ent approach. We have not directly considered the internal
behavior of the pattern, but instead looked for approximate
descriptions of the propagation speed of the pattern. This
information has already been found for other versions of this
system (less general diffusion or convection, more complex
reactions) [22,35].

To understand a system well, it is best to isolate influences
[25]. This is why we consider the pattern forming away from
the spatial boundaries. In this instance we also have sym-
metrical parameterless reactions, giving the most elementary
form possible. Previous work has shown boundary effects
mixed in with other behavior [34], and that the boundary can
control the existence of pattern [22].

Our analysis is the natural one given the system and its
behavior. We have combined two simple techniques to re-
duce a complex problem to a more manageable one. We
consider only the (apparently) linear aspect. Our analysis
predicted the speed of the incident traveling waves over the
full parameter range. In combination with the numerical in-
vestigation, we demonstrate two different behaviors of the
system. There is a distinct transition between them, with the
transition region indicated by the analysis. Our work also
confirms the validity of the Fisher-type analysis in this two-
species system. Furthermore, we give some insight to the
different behavior to the right and left of the pattern.

Having successfully analyzed this simple A-w system we
must attempt a similar analysis on a more complex system.
The next step is to consider a more realistic set of reaction
functions, such as the Schnakenberg ones. In this case, we
already know that first-order effects will come into play [36].
This should lead to a clearer understanding of the Turing
phenomenon.
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